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Polyomavirus early region (and Tony) circa 1979
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Polyoma middle T has associated kinase activity
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Following up Marc Collett and Ray Erikson’ s seminal observation

that the v-Src RSV transforming protein has an associated protein

Kinase activity, three groups — Alan Smith and Mike Fried (ICRF),

Brian Schaffhausen and Tom Benjamin (Harvard), and my
colleagues, Walter Eckhart and Mary Anne Hutchinson, and | —
had all found that Py mT has an associated kinase activity and
presented our findings at the 1979 CSH Symposium on Tumor
Viruses held at the end of May 1979. We agreed to submit our
papers to Cell when we got back.

at

ng
C 32p klnase assay that kinase activity is important for transformation

Our paper was submitted on June 11, 1979




It was just as hard to get papers published in 1979!

Paper:
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or transformed cells.

Paper submitted to Cell - June 11, 1979. Reviews received July 9, 1979
Eckhart GO0623 Reviewer 1

Eckhart GO&23 ReV|ewer 2

This manuscript reports a protein kinase-like actiwvity is associlated
with T—sera immuncoprecipitates of polyoma T-antigens from virus dnfected

TsA mutants have little effect upon the detection

Paper: Eckhart GOGZ23 ReVIeWer 3

This manuscript deals with the intriguing and somewhat fashionable
idea that wviral ceoded proteins involved in transformation may have an
associated protein kinase activity. In this particular case the authors
present preliminary evidence which is interpreted to indicate that (a)
the polyoma medium T from infected and transformed cells is at least the
target for phosphorylation and that functional medium T may. in addition.,
be required for an observed protein kinase activity found in immunopre-
cipitates using rat anti-tumor sera: (b) large T is alsoc phosphorylated but

to a lesser extent, and does not appear to be reguired for activity: (c)
the kinase activity evidently deoes not use IgG as an efficient phospho
acceptor. Unfortunately, very few of these conclusions drawn by the
authors are actually clearly substantiated by the data.

Major Comments:

1) It is possible and consistent with some of the data that medium

T is the target of a kinase in rat IgG immunoprecipitates. However ,
without additional biochemical evidence such as fingerprinting of the
phospho protein etc.., such a conclusion is not wholly warranted. This

is especially true because in vivo medium T is apparently not phos-
phorylated.



The first sighting of phosphotyrosine - June 1979
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First phosphoamino acid analysis of 3?P-labeled polyoma
middle T - luckily | used “old” electrophoresis buffer
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Thin layer electrophoresis at pH “1.9 “on June 14, 1979
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The first sighting of phosphotyrosine - June 1979
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® | repeated the whole experiment on June 24, 1979 with the same result. Since
the unknown 32P-labeled compound was stable to acid hydrolysis, it seemed
likely to be a phosphate ester, and, because there was only one hydroxyamino
acid in addition to serine and threonine, i.e. tyrosine, the most logical
explanation was that this was phosphotyrosine



The three hydroxyamino acids Iin proteins
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The first sighting of phosphotyrosine - June 1979
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Despite the possibility that | might be on the verge of an
Important discovery, | left on July 3 to drive up to Idaho to
raft the Salmon River, and from there on to Cambridge in
England to attend the DNA Tumor Virus Meeting, not getting
back to La Jolla until August 6!

® Totestthis idea, | naively tried to make some P.Tyr by mixing POCI; and
tyrosine in water creating a black tar! However, | extracted a little soluble
material, and, on July 2, | ran this at pH “1.9”, finding a faint ninhydrin-staining
spot that migrated between P.Ser and P.Thr






Phosphoamino acid analysis of phosphorylated polyoma middle T
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Eckhart, Hutchinson and Hunter, Cell 18:925 (1979)



1P by BT

An Activity Phosphorylating Tyrosine in Polyoma
T Antigen Immunoprecipitates

In retrospect, the discovery of P.Tyr depended on the fact
that | had been too lazy to make up fresh pH 1.9
electrophoresis buffer, and the pH of the buffer | used had
dropped to 1.7, causing P.Tyr and P.Thr to resolve

In 1983, Sara Courtneidge showed that the polyoma mT-
associated tyrosine kinase activity is due to associated c-Src
rather than being intrinsic

Paper submitted to Cell June 11, revised version submitted September 25, accepted September 27,
and published December 1979

Eckhart, Hutchinson and Hunter, Cell 18:925 (1979)
Smith, Smith, Griffin, Fried, Cell 18:915 (1979)
Schaffhausen and Benjamin, Cell 18:935 (1979)




The second stroke of luck - using v-Src as a control!

Fawes foe.
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carried outon ~ PH"LY’ | B

September 18, 1979 LT mT_ mT IgH/Src
invivo acid protease



v-Src phosphorylates the Ig H chain on tyrosine

S TYR @Fr1YR

s ““PTHR
PSER

—= pH3.5 ELECTROPHORESIS

== CHROMATOGRAPHY

pH1.9 ELECTROPHORESIS ~=—

Experiment carried out
September 23, 1979 Hunter and Sefton, PNAS 77:1311 (1980)



v-Src increases P.Tyr levels in transformed chick cells

Uninfected v-Src-transformed
A > B 3 T
Ser(P) ® e, Ser{Pl' @® P e
- i & - -
l . .'
Tyr(P) Tyr(P)
e . » é
pH 1.9
+ < pH 3.5

Experiment carried ,,
out on October 14- - P-labeled control and RSV-transformed
chick fibroblasts

17,1979 Hunter and Sefton, PNAS 77:1311 (1980)
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The second paper fared a lot better!
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PROCEEDINGS OF THE NATIOMNAL ACADEMY OF SCIENCES, LIS A,
PROCEEDINGS OF THE MNATIC J'\T)\,]_. ACADEMY OF SCIENCES, IS A, 5
Tu-nF Hunter nd Bartholo w M. Sefton =~ )
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Tony Hunter and Bartholomew M. Sefton

e The tranaforming gene product of rous sarcoma virus phoaphorylates tyrosine
L5 A, an interdisciplinary journal, intends to publish brief reports of original research of
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reret, Ml i e | =
Vol 77, Mo, 3, pp. 13111315, March 1980
Biochemistrs

Transforming gene product of Rous sarcoma virus
phosphorvlates tvrosine

(phosphotyrosine / prote e/ phosphopr i

Amazingly, all the experiments in the Cell and
PNAS papers were done In less than 5 months,
and all the v-Src experiments were completed in

less than a month

“Discovering the first tyrosine kinase.”
PNAS 112:7877 (2015)

Paper submitted to Bob Holley on November 12, communicated to PNAS on
December 4, 1979, and published March 1980
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The kinome turns 30 - stone age b
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Hunter and Cooper, Annu Rev Biochem 54:897 (1985)
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The birth of the kinome: a thousand and one protein kinases

MAMMALIAN PROTEIN KINASES
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Hunter, Cell 50:823 (1987)



"“Humun Kinome
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; Man.;l.lr;g Whyte Martinez,
Human Kinome 2. O (2018) |

| ® ~535 protein kinase genes

e 22 new remote/atypical kinases (including: Fam20C, a secreted
PK that is the real casein kinase, and NME family His kinases)

* No new canonical tyrosine kinases

* Afew metabolic kinases that moonlight as protein kinases

Wilson, Prior et al. Cancer Res 78:15-29 (2018) — 535 protein kinases
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How many tyrosine kinases are there?

The finding that v-Src and c-Src phosphorylate tyrosine gave us the
first tyrosine kinase in 1979

By the end of 1980 four tyrosine kinases were known (v-Src, v-Abl,
EGF receptor, v-Fps/Fes). In 1984, v-ErbB was shown to be derived
from the EGF receptor

By the end of 1990 over 50 tyrosine kinases had been identified in
vertebrates and equal numbers of tyrosine kinases and serine
kinases were known, leading to the prediction that there might be
several 100 tyrosine kinases in a vertebrate genome and a total of
over a 1000 protein kinases

The complete human genome sequence reported in 2001 reveals
that there are 90 tyrosine kinases out of a total of 518 PKs



Manning, Whyte,
Martinez,

Hunter and
Sudarsanam
Science 208:1912
(2002)

Ninety human tyrosine kinases




Protein kinases and human disease

Over 175 protein kinases out of the ~535 human protein kinases have been
implicated, either through gain-of-function or loss-of-function mutations, in human
disease, especially cancer. The pervasive control functions of protein kinases also

make them ideal therapeutic intervention targets, even for diseases where there is no
genetic basis

Gerard Manning
Immunity (19)

Ny

Development (17)

Metabolism (13)

Cardiovascular (14)

Reproduction (3)
Forty five kinase inhibitors (32 TKls) are approved as cancer drugs



(32 TKIs)

32 years of kinase drug discovery = 45 approved Kils
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Marmal

Pancreatic adenocarcinoma progression

PaniN-1

KRAS
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The tumor microenvironment

Cancer Stem Cell (S5C)

Cancer-Associated Fibroblast -

(e.g. stellate cells) [cm:, -,

Endothelial Cell (EC)

Cancer Cell (CC)
_ Blood vessel

Immune
Fericyte (P3) ;ll'lgz::'nmatnry Cells

= Local & Bone marrow-
derived Stromal Stam

& Progenitor Cells i
=) Invasive Cancer Cell

The tumor is a community of cells that talk to and support each other

Core of Primary Tumor Invasive Tumor Metastatic Tumor
microenvironment microenviromment microenwvironrmeant




Pancreatic stellate cells (PSCs)

® Star-shape ' = ' acterized in the

1990s (Ap Encapsulated Tumor
® Inthe hes el con DS e L R B d mainly exhibit
a periacin g :

Tumor cells
sform from a

cretes
of cytokines

® Inrespons
quiescent
excessive

® PSCsha
pancreatit

: : : stellate cell
Omary et al. JCI 117:50 (2007) s e S P MCRAT,

granule



Crosstalk between PSCs and PCCs plays a critical role
In PDAC tumor progression

pancreatic stellate cells
(PSCs)

pancreatic cancer cells
(PCCs)

Leukemia Inhibitory Factor
(LIF)

What paracrine factors do pancreatic stellate cells secrete that can act
onpancreatic cancer cells and vice versa?




Profiling the secretome of stellate and cancer cells

MiaPaCa2 secretome hPSC secretome
1st biological 2nd biological 1st biological 2nd biological
replicate replicate replicate replicate
1884 proteins*

2554 proteins* 3221 proteins* 1513 proteins*

hPSC cells

MiaPaCa2 cells
172 unique proteins**

423 unigue proteins **

Data extraction criteria:
* Proteins identified with >3 peptides are considered Yu Shi
** Only proteins identified with >= 10 peptides and are more than 10 Ruijun Tian

fold are considered as unigue proteins



Proteins secreted uniquely from stellate and tumor cells

hPSC

MiaPaCa2

Both cells

Growth factors /
cytokines /
chemokines

ECM

Proteases and
inhibitors

Receptors /
membrance
proteins

CTGF, CCL2, CXCL12, HGF,
GDF15, IL6, IL11} LIF] Wnt5a,
ANGPTL2

Collagen lal, IV, Xll, XV, COMP,
EFEMP1/2, FBN1/2, FMOD, FN1,
LUM, POSATN, SPARC, SPON2,
STC1/2, VCAN

MMP1/2/3, ADAMTS1, CST1,
MASP1, PAMR1, PLAT, RECK,
SERPINs, TFPI2

CDH2, CDH6, CD248/Endosialin,
CD90, RARRES1

AREG, BMP1, CXCL5, CXCL16, M-
CSF, G-CSF, PDGFc, b/a(low),
PEDF, VEGFa, VGF

SRRM2

ADAM15, MBTP1

EGFR, Erb2, EphA2, EphA4, DNER,
HGFR, IL27Ra, TGFBR3, TNFR1a

CXCL1, CXCL2/3(low), HDGF,
IL8, TGFp1, VEGFc,

Collagen la2, I, IV, V, VI,
ECM1, LTBP3

ADAMTS9, CTSB, CTSD,
CSTB, CST3, CPE, PLAU,
SERPINE1, TIMP1/2

CD44, CD59, NRP1,
TNFRSF12A

This secretome analysis has now been repeated with 30 PDAC lines and tumor tissue samples



Why we focused on LIF

® Pancreatic stellate cell conditioned
medium (CM) stimulates pTyr705-STAT3
In PDAC cells

Log, Ratio HM (S5./Con. 2nd
E Y [£] 1 u B -] [-]
=

® STATS3 binds to the LIF receptor (LIFR)
and its co-receptor GP130 in PDAC cells
stimulated with stellate cell CM

Losg, Ratio C.M. Sti/No 3ti.

] 0,

® The stellate cell secretome contains high
LIF levels, and LIF is a stem cell factor

Log, Cancar - Log, Stellabe

=10 -5



Why we focused on LIF

shNC shLIFR#1 shLIFR#2
LIFCM - LIFCM - LIFCM

stimulation -
pSTAT3

KP4 human PDAC cells
CM = stellate cell
conditioned medium

a-Tubulin
STAT3
merged

stimulation DMEM LIF PSCCM
anti-LIF mAb
pPSTAT3

KP4 human PDAC cells
D25 neutralizing
anti-LIF mAb

oa-Tubulin
STAT3

merged

1
&
1
&
1
&

LIF is the major secreted factor activating STAT3 in pancreatic cancer cells



Why we focused on LIF
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LIF is highly expressed by pancreatic stellate cells and by some not not all PDAC cells
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Does LIF play an important physiological role in
PDAC?



The “KPC” Kras G12D/p53A mouse pancreatic cancer model

—— non-tumor control
Kras'-SL-G120*.1pg3"*.pdx1-Cre
~— Kras'SLG12D*.7pg3ffl.pgy1-Cre €

100
80-
60+

~50d ~120d
40+

Survival rate (%)

20+

DRy —r—r—r—y—y—ir—r——
0 28 56 84 112 140 168

Days
Pdx1-driven Cre expression in pancreatic epithelial cells during development
induces expression G12D K-Ras and loss of p53, initiating tumorigenesis



Does LIF play an important physiological role in PDAC?

® Preclinical studies to test the therapeutic effects of LIF
signaling blockade with a neutralizing LIF mAb (D25) Iin
KrastSt-612D: Tp53f:-Pdx1-Cre;Rosa26-Luc (KPC-Luc)

mice



Phospho-STAT3 neutralizing activity of anti-LIF mADb

Normal
control IgG

anti-LIF mADb

Ty . !.- 1 ] :‘I: .:'
e = TRk !“ :

Treatment of KPC PDAC mice with D25 anti-LIF mAb at 25
mg/kg reduces nuclear phospho-STAT3 IHC signal



Preclinical therapeutic treatment protocol

IVIS/AMIRI scan
VIS s
l Gemcitabine

(50 mg/kg BW)

t t t 1 k )

anti-LIF mAb (D25) a week per cycle
(25 mg/kg BW)

Day 0 = 32 days of age



LIF blockade slows down tumor progression and
sensitizes chemotherapy to prolong survival

=-control IgG (n=14)

anti-LIF mAb (n=10) r ]:’ ‘ P
1 | — ___ == Gem + control IgG (n=15) |**

_- H:mu-fu-r.r mAb (n=15)

'E §0- ]_\_L:;em + anti-LIE
404

% CONLIO| my
n \LI_Iﬁ

01428 42 49 86 62
muﬂlﬂl{dml

LIF blockade slows tumor progression and enhances the response to
gemcitabine in the KPC mouse model of PDAC




LIF blockade has a therapeutic benefit for advanced PDAC
In a preclinical study using maintenance KPC mouse model

—— Gem + control I1gG

Triple chemotherapy: weekly cycle N
nab-Paclitaxel (50 mg/kg) A N __100 Gem +anti-LIF mAb
Cisplatin (4 mg/kg) : Gemcitabine : X 80
Gemcitabine (80 mg/kg) 1 (50 mg/kg I o

} LU SN R
cd3 i cd5 | cd7 2 40-
t t t V2
anti-LIF Ab or control IgG " 207
(25mg/kg BW) 0 n

0 1428 49 56 63 70 77 84 91
Days
65.1+2.7 vs. 85.6+2.5days

LIF has a role in progression in the KPC mouse model of PDAC



LIF blockade in KPC mice targets the cancer “stem cell”
population and promotes tumor differentiation

Total ALDH* cells (x10¢)
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Does LIF play an important physiological role in PDAC?

® Use Kras!St-6G12D: TpP53M:Pdx1-Cre;LIFR" mice to
genetically assess the intrinsic role of LIFR signaling in
PDAC tumor cells



Aberrant LIF and LIFR expression

In PDAC
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Pancreatic cancer cells are the main target of LIF action
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Deletion of both Lifr alleles in pancreatic ductal cells significantly increases
survival of KPC-Luc mice without Gem and sensitizes tumors to Gem




LIF is elevated at early stage disease and correlated with
progression in the mouse PDAC model
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LIF protein levels are elevated in human PDAC tumor tissues

Human normal/tumor tissue Human patient serum
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LIF levels correlate with disease state in human PDAC

Tissue LIF level (pgimg total protein lysates)
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Does LIF play an important physiological role in PDAC?

= Anti-LIF neutralizing mAb can prolong survival of a mouse model of
pancreatic cancer

= LIF levels in serum/tumor samples are correlated with stages of
PDAC progression in the KPC mouse model

= There is a correlation between LIF levels in serum/tumor samples,
and the corresponding prognosis/overall survival in human PDAC
patients (LIF as a potential biomarker for early detection?)

= The next step is to develop humanized anti-LIF mAb for human
pancreas cancer clinical trials in combination with standard of care

= Northern Biologics (Toronto) has developed a humanized anti-LIF
mAb MSC-1, which will shortly begin trials in highly refractory cancer
patients (I do not have a financial interest in Northern Biologics)



Phosphotyrosine

o But six other amino acids can
o be phosphorylated in addition
to Ser, Thr and Tyr:
NH,
HO _
? His, Arg, Lys, Cys, Glu, Asp
F)
Tyrosine

Phosphate is linked to the 4-OH
position as a phosphoester
(heat stable)



History of histidine phosphorylation of proteins

®  Histidine phosphorylation is well documented in bacterial “two-component” signaling
pathways that are used for chemotaxis, osmosensing, etc.

®  Stimulus —>pHis in a receptor/sensor protein (P-enzyme) —s pASp in a response
regulator protein—> signal output

® pHisis also found in eukaryotes. Metabolic enzymes such as phosphoglycerate
mutase (PGAM), succinyl CoA synthase (SCS), and ATP citrate lyase (ACLY) use a
pHis enzyme intermediate. But pHis is also found in other proteins, e.g. histone H4

®* NME1/2 (NDPK-A/B) are the only reported histidine kinases
® PHPTL, LHPP and PGAMS5 are pHis phosphatases

® NME family enzymes (10 members) use a 1-pHis enzyme intermediate to transfer
phosphate from ATP to an NDP (or to a His residue in a protein)

ATP + nucleoside diphosphate (GDP) - ADP + nucleoside triphosphate (GTP)

® Levels of NMEL1 are reduced in metastatic cells



Historv of histidine phosphorvlation

° pHiS was first ¢ Identification of Phosphohistidine in
Digests from a Probable Intermediate

®  Histidine phosy of Oxidative Phosphorylation® ymponent” signaling
pathways that i ¢. p. Boven, M. Detves, X, 1, Enxan, D. E
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Levels of NME1 are reduced in metastatic cells



Histidine phosphorylation has many functions
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Histidine phosphorylation

Bacteria

Stimulus

Histidine
kinase

Response
Biological / regulator

response output

pHis — pAsp phosphorelay

Mammals

NME 1/2

Histidine kinase

118
Protein Protein

\_/ E
PHPT-1/LHPP/PGAM5

pHis phosphatase

Ca?*-activated K* channel KCa3.1 -
pHis358 in C-tail increases opening

TRPV5 channel activity/Ca?* flux increased
by pHis711 in C-tail

B subunit of G proteins (pHis266 activates)
Histone H4 (pHis18 unknown function)



Stable phosphohistidine analogues to make anti-
PpHis antibodies similar to anti-pTyr antibodies

(pTza = phosphoryltriazolylalanine)

pTza analogues incorporated into degenerate Ala/Gly 11-mer peptides to
immunize rabbits and generate sequence-independent anti pHis-antibodies

Steve Fuhs



Anti-1-pTza and 3-pTza polyclonal antibodies
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Anti-3-pTza rabbit antibodies detect only phosphorylated 3-pHis PGAM




Anti-1-pTza and anti-3-pTza monoclonal antibodies

Anti-1-pTza monoclonal antibody
immunoblottin

Pancreatic cancer céll lines :
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Fuhs et al. Cell 162:198-210 (2015)




HelLa cell anti-3-pHis mADb IF exhibits spindle and

centrosome staining
Centrosomes and spindle poles stain during interphase and mitosis

Punctate staining of nuclei in interphase
Interphase ~Early Prophase
3-pHis (SC39-4) e 4 G

Anaphase

3-pHis mAb SC39-4; DAPI
4% PFA, 15 min (pH 7.4); 0.1% Triton (pH 9)

with Li Ma Fuhs et al. Cell 162:198 (2015)



Proteins enriched by pHis mADbs

In total, 786 proteins were enriched >2-fold by either 1-pHis (280 unique) or 3-
pHis (156 unique) mAb affinity columns in the control versus the pH 6/boiled
denatured lysate sample

Top GO Biological Process bv p-value

The sites of pHis in these proteins need to

be mapped to be certain that they are truly

targets for regulation by histidine kinases
in the cell

KIDOSO0IMe PI0YEresis ole)

Cell cycle related 97

Histone H4, NME1/2, PGAM, ACLY were enriched, as expected



Open questions about histidine phosphorylation

How does His phosphorylation regulate protein activity,
and what functions are regulated by His phosphorylation

» |s His phosphorylation used for short term regulatory
responses, because of its chemical instability?

» Are there pHis-specific binding domains, like SH2
domains, which transmit signals?

» Does pHis act through local charge effects on proteins
(the change is +1 to -2)?

> |s His phosphorylation regulation of divalent metal ion
binding a general principle?



PTEN/TSC1 double knockout activates mTORC1 and mTORC?2

(<]
A A Growth factors

Amino acidg 4 o (insulin / IGF1)

/ Growth factor
N~ receptor

Growth, proliferation and metabolism

Sravanth Hindupur and Mike Hall (Biozentrum, Basel)



Liver-specific Tscl/Pten double KO mice develop HCC by 16-20 weeks

6 wks 12 wks 16 wks 20 wks
| I I I 1
Birth | E| . T
..’.‘ _|
Fatty liver Microscopic tumors HCC HCC (severe)
Hepatamagaly L-dKO tumors

Pathology report (20 wks) L-PTEN KO L-TSC1 KO
Architecture Normal Normal

I Abnormal

Hepatosteatosis No 30% of liver parenchyma 5-10% of liver parenchyma

(Micro + Macro steatosis)

Nuclear polymorphism No Yes

I Yes

Severe HCC; Multi nodular;
Ductal proliferation

Cancer No No No

Sravanth Hindupur and Mike Hall (Biozentrum, Basel)



Proteome analysis of L-dKO tumors: combined increase in NME1/2 and
decrease in LHPP levels predict altered histidine phosphoryation

Total proteins

262
2452
433

Total detected (= 1 tumor)
@ Up regulated (= 10 tumors)
@ Down regulated (= 10 tumors)

His
kinases
7753

Mot regulated (= 10 tumors)

3 tumors each from 4 mice (20 wks)

Kinases

Up
NME1
NME2
EGFR
AAK1
AMPK
PKM2
MAPK3
GSK3B
GSK3A
PAK2
CHKA/B
PFKP
CKB
PACSIN2
GALK2
PIP4K2C
PAPSS1

Down

AKZ2
IDNKP
FKB1

Phosphatases

Up Down
IMPAD1 LHPP €— pHis
PTPN23 G6PC phosphatase
PPP3CA ACP5
PPP1R12A EPHX2
PPP1R14B
PSPH

Hindupur et al. Nature 555:678 (2018)



Increased phosphohistidine (3-pHis) in tumors with low LHPP
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LHPP overexpression in mouse L-dKO hepatoma cells
reduces global phosphohistidine (3-pHis)

CB1 cells
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95°C == . - -+
CB]. I:E"S* LHPP o g —
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:,__
i__ .
E -
— | ===
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Ponceau S

*CB1 cells derived from L-dKO tumor Hindupur et al. Nature 555:678 (2018)



LHPP is a tumor suppressor in vitro and in vivo (mice)
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LHPP expression reduces liver tumor formation

Hindupur et al. Nature 555:678 (2018)



LHPP low (and NME1/2 high) in human tumors
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Elevated 3-pHis levels in human HCC tumor proteins suggest

arole for histidine phosphorylation in liver tumors
Patient 6 Patient 7
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Hindupur et al. Nature 555:678 (2018)



Conclusions

Our results suggest that the LHPP pHis phosphatase acts as a
tumor suppressor in liver cancer

Consistent with this, HCC patients with low LHPP RNA levels
have worse prognosis

|dentification and functional characterization of 3-pHis proteins
elevated in HCC is required to establish that LHPP acts as a
tumor suppressor by limiting histidine phosphorylation, i.e.
which are the key pHis proteins?

Can inhibitor drugs be developed to target the key His kinases
for treatment of hepatocellular carcinoma? Is His
phosphorylation important in other cancer types?

Hindupur et al. Nature 555:678-682 (2018)



The long road to GLEEVEC™

1845 — 1960 —> 1973 » 1982 —» 1984 —» 1990 — 1996
CML Chr 22A t(9:22) Bcr-Abl cr-Abl  Bcr-Abl causes STI571 inhibits
Ph Chr translocation (22:9) PTK CML in mice CML cell growth
activity and v-Abl tumors
1970 » 1978 — 1980 2000
Ab-MuLV v-Abl v-Abl STI571/AbI
protein tyrosin& structure
kinase 1988 — 1992 — 1998
1911 — 1970 —» 1975 — 1977 — 1978 —*»1979 / First PTK CGP57148 STIS71
RSV v-src c-src v-Src v-Src v-Src inhibitors PDGFR/ in CML \
gene gene protein PK tyrosine reported Kit/Abl TKI patients
kinase/v(TKIs) (Novartis) 2001
1952 »1977 — 1979 — 1983 NEJM
polyoma mT mT mT-associated papers
virus antigen associated  c-Src / reporting
PTK activity ST_|571
1927 » 1988 — 1996 —» 1998 — 2000 efficacy
W mutant W is c-kit gof c-kit gof STI571 in CML
mouse A kit leukemia  GIST in GIST and GIST
1986 ——» 1986 mutants mutants patients
HZ4-FeSV v-Kit

PTK Gleevec'" approved by the FDA May 10, 2001
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