Anatomy of a Breakthrough in Targeted Cancer Treatments

Brian Druker, MD

Knight Cancer Institute at Oregon Health & Science University

Breakthroughs Take Time

The 20th Century

Leading causes of mortality

<u>1900</u>

- 1) Pneumonia
- 2) Tuberculosis
- 3) Enteritis
- 4) Heart Disease
- 5) Stroke
- 6) Liver Disease

The 20th Century

Leading causes of mortality

<u>1900</u>

- 1) Pneumonia
- 2) Tuberculosis
- 3) Enteritis
- 4) Heart Disease
- 5) Stroke
- 6) Liver Disease

2000 Heart Disease Cancer Stroke COPD Accidents Pneumonia/Influenza **Factors Leading to Eradication and Treatability of Infections**

• Improved sanitation and refrigeration Prevention

• Antibiotics

Specific treatments

• Vaccination

Immune modulation

Historical Perspective on Chronic Myeloid Leukemia (CML)

1845	1985	2001
First description of CML	BCR-ABL	Specific therapy for CML

Clinical Description of CML

LEUCOCYTHEMIA,

WHITE CELL BLOOD,

010

IN RELATION TO THE

PHYSIOLOGY AND PATHOLOGY OF THE LYMPHATIC GLANDULAR SYSTEM.

BY JOHN HUGHES BENNETT, M.D., F.R.S.E.,

PROFESSOR OF INSTITUTES OF MEDICINE AND OF CLINICAL MEDICINE IN THE UNIVERSITY, AND PREMOENT OF THE PHYSIOLOGICAL SOCIETT, EDINBURGH. MEMBER OF THE AMERICAN PHILOSOPHICAL SOCIETT; OF THE IMPERIAL SOCIETT OF PHYSICIANS OF VIENNA; OF THE MEDICAL ASSOCIATION OF PRUSSIA; OF THE ANATOMICAL AND BIOLOGICAL SOCIETES OF PARIS; OF THE MEDICAL SOCIETIES OF SWEDER, COFENHAGEN, ETC. ETC.

WITH TWO COLOURED LITHOGRAPHS, AND NUMEROUS WOODCUTS.

EDINBURGH: SUTHERLAND AND KNOX. LONDON: SIMPKIN, MARSHALL, & CO.

MDCCCLII.

Beißes Blut.

Außer sehr

wenig rothen Blutkörperchen bestand ber ungleich größere Theil aus benfelben farblofen ober weißen Rörpern, Die auch im normalen Blut vorfommen, nämlich fleinen, nicht gang regelmäßigen Proteinmoleculen, größeren, törnigen, fetthaltigen, fernlofen Rörperchen und granulirten Bellen mit einem rundlichen, hufeisenförmigen oder fleeblattartigen ober mit mehreren napfförmigen, biftincten Rernen. Die größeren biefer Bellen hatten ein leicht gelbliches Aussehen. Das Berhältniß zwischen ben farbigen und farblosen Blut= förperchen stellte fich bier ungefähr umgekehrt, wie im normalen Blut, indem die farblosen bie Regel, die farbigen eine Urt von Ausnahme ju bilden fchienen. Denn ich ba= her von weißem Blute fpreche, fo meine ich in ber That ein Blut, in welchem bie Proportion gwischen ben rothen und farblofen (in Daffe weißen) Bluttörperchen eine umgekehrte ift, ohne daß eine Beimijchung frembartiger che= mijcher oder morphologischer Elemente zu bemerten ware.

iđi

würde mich glücklich schätzen, der Wissenschaft dadurch zu einer neuen und, wie es mir scheint, nicht unwichtigen That= sache verholfen zu haben. —

Dr. Virchow.

Chronic Myeloid Leukemia (CML)

15 - 20 % of all leukemias

• 1 - 2 cases per 100,000 per year

Average age of onset - 50 to 60 yrs of age

Median survival – 3 to 5 years

Breakthroughs Require Knowledge

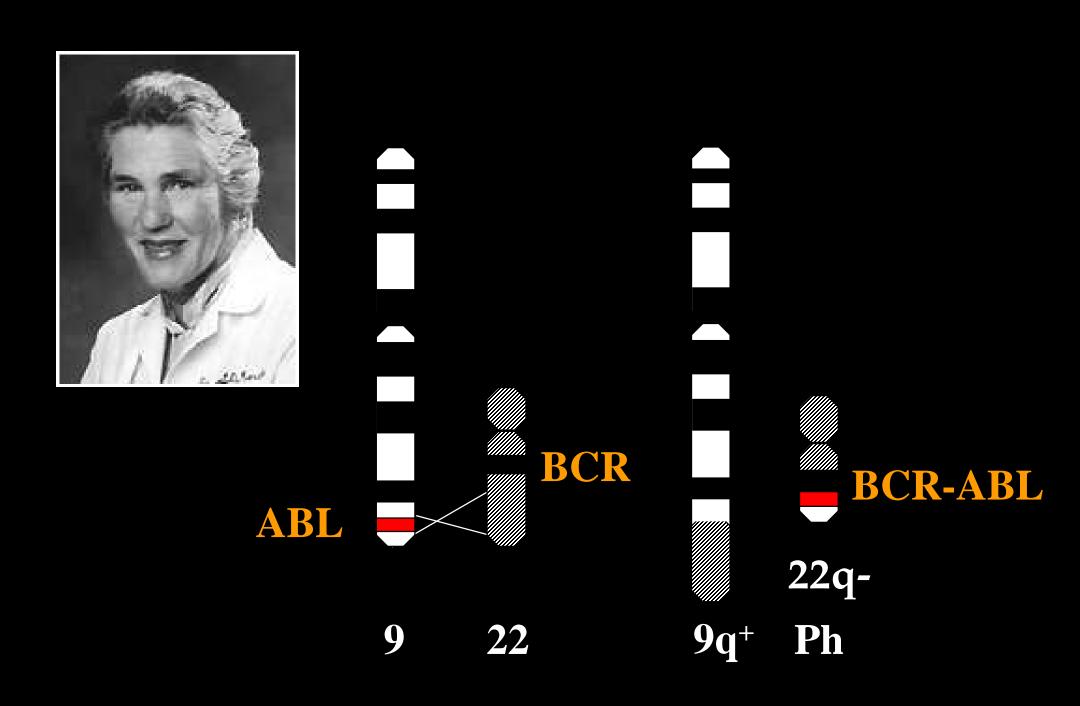
Molecular Pathogenesis of CML

A Minute Chromosome in Human

Chronic Granulocytic Leukemia

In seven cases thus far investigated (five males, two females), a minute chromosome has been observed replacing one of the four smallest autosomes in the chromosome complement of cells of chronic granulocytic leukemia cultured from peripheral blood. No abnormality was observed in the cells of four cases of acute granulocytic leukemia in adults or of six cases of acute leukemia in children. There have been several recent reports of chromosome abnormalities in a number of cases of human leukemia [including two of the seven cases reported here: Nowell and Hungerford, J. Natl. Cancer Inst. 25, 85 (1960)], but no series has appeared in which there was a consistent change typical of a particular type of leukemia.

Cells of the five new cases were obtained from peripheral blood (and bone marrow in one instance), grown in culture for 24–72 hours, and processed for cytological examination by a recently developed air-drying technique (Moorhead, *et al., Exptl. Cell Research*, in press). The patients varied from asymptomatic untreated cases to extensively treated cases of several years duration in terminal myeloblastic crisis. All seven individuals showed a similar minute chromosome, and none showed any other frequent or regular chromosome change. In most of the cases, cells with normal chromosomes were also observed. Thus, the minute is not a part of the normal chromosome constitution of such individuals.


The findings suggest a causal relationship between the chromosome abnormality observed and chronic granulocytic leukemia.

PETER C. NOWELL

School of Medicine, University of Pennsylvania DAVID A. HUNGERFORD Institute for Cancer Research

Nowell & Hungerford, 1960

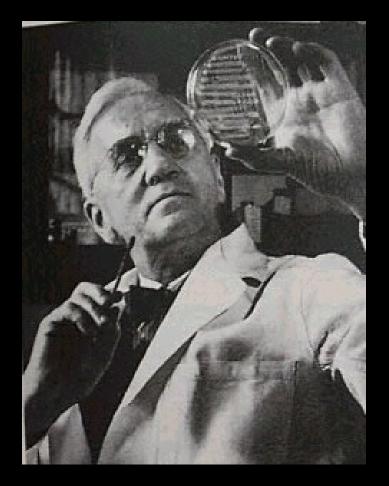
Science 132.1497

Breakthroughs Often Occur When Different Fields of Investigation Converge

And the Right Technology is Applied to the Right Problem at the Right Time

Historical Perspective on CML

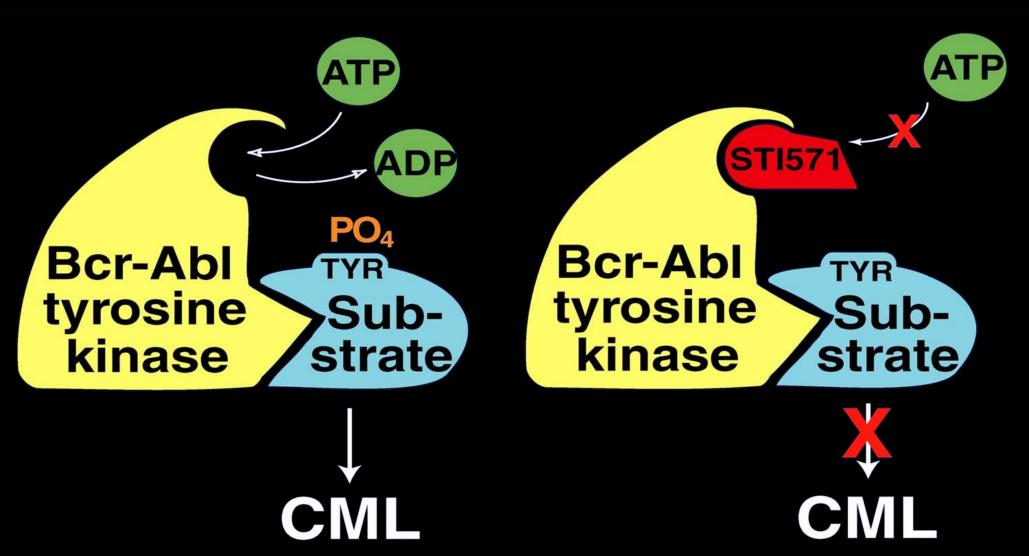
Breakthroughs Requiring Seeing Things Differently


Even if the Answer is Right in Front of You

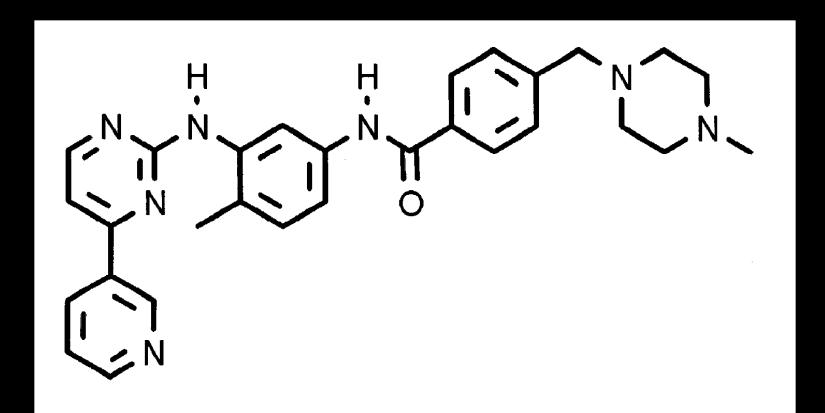
Velcro

George de Mestral

Penicillin

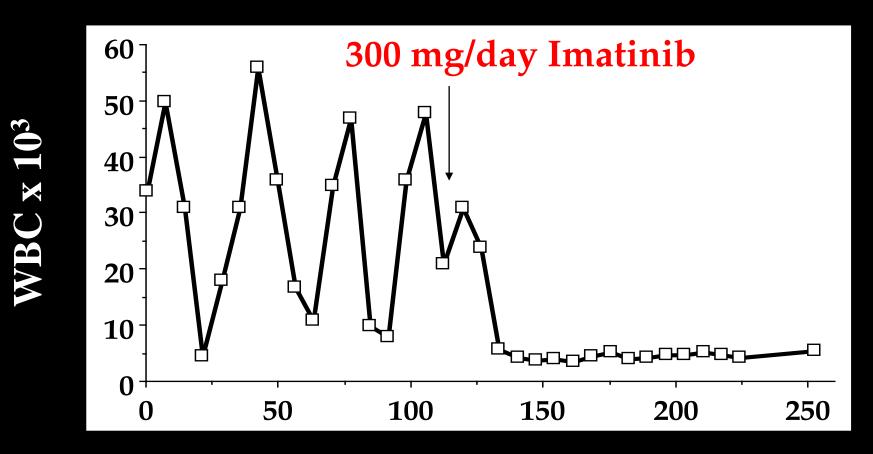


Alexander Fleming

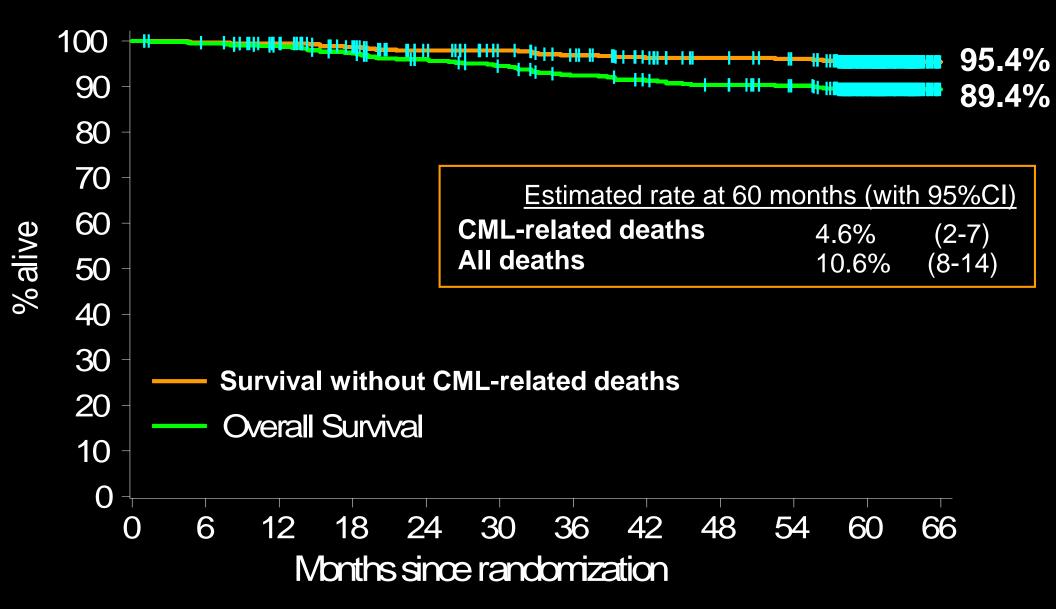

BCR-ABL As a Therapeutic Target for CML

- Product of the Philadelphia chromosome
- Present in all patients with CML
- Causative molecular abnormality of CML
- BCR-ABL is a constitutively activated intracellular tyrosine kinase
 - Tyrosine kinase activity of BCR-ABL is required for function

BCR-ABL As a Therapeutic **Target for CML**


STI571 (CGP 57148B) Imatinib mesylate GleevecTM, Glivec[®]

Reasons Not to Develop Gleevec

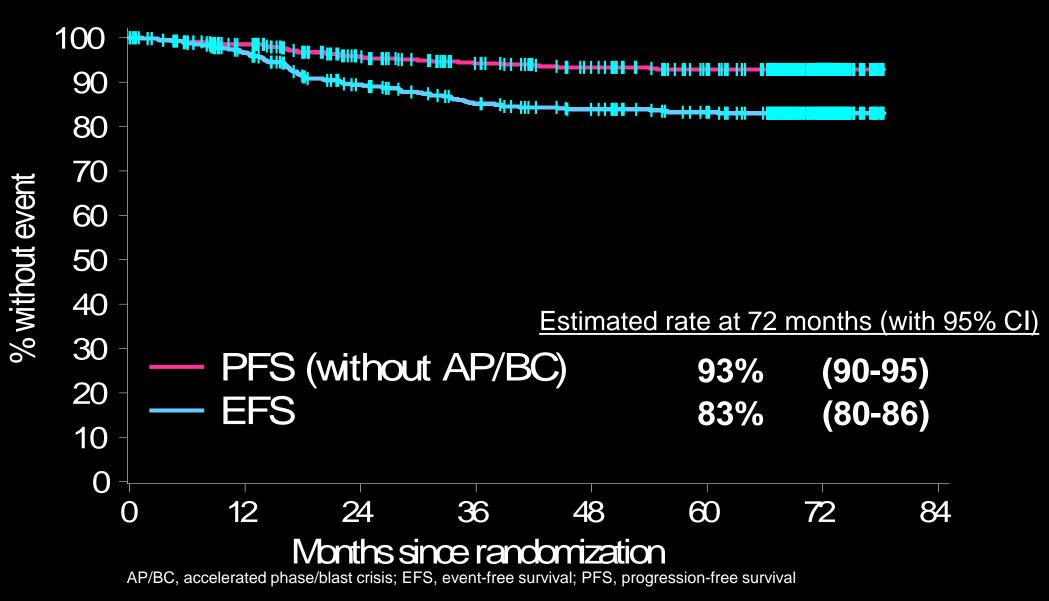

- You can't make a drug against this target
- The drug will never work
- It will be toxic
- The drug will never make enough money to justify its development

Pt 0101

Days

Overall Survival on Imatinib

MAY 28, 2001 www.time.com AOL Keyword: TIME THERE IS NE THESE ARE THE BULLETS. **Revolutionary new pills like GLEEVEC**


combat cancer by targeting only the diseased cells. Is this the breakthrough we've been waiting for?

Survival According to Molecular Response

At 18 mos	Major Molecular Response or Better	No Major Molecular Response	P Value
Patients, n	164	89	
Deaths, n (%)	12 (7.3)	13 (14.6)	
Not due to CML	12 (7.3)	4 (4.5)	
Due to CML	0	9 (10.1)	
Estimated 10-year overall survival, %	93.0	85.6	.0367
Estimated 10-year freedom from CML-related death, %		90.5	< .0001

Hochhaus et al, NEJM 376:917, 2017

Relapses and Disease Progression

Hochhaus A. et al, Blood. 2007; 110, 11. Abstract 25. ASH 2007 Oral Presentation

CML Summary

- Imatinib is current standard therapy
 - Significant prolongs disease duration
- Relapses mostly due to kinase domain mutations
 - Novel ABL inhibitors have significant activity and are being used in newly diagnosed patients

CML has been converted to a manageable condition

Where Else Has Gleevec Worked?

- Gastrointestinal stromal tumor
- Melanoma
- Hypereosinophilic syndrome
- Dermatofibrosarcoma protuberans (DFSP)

Lessons Learned From Clinical Trials With Gleevec

IT'S THE TARGET!

Good Target + Good Drug

Good Results

Translating the Success of Gleevec to Other Malignancies

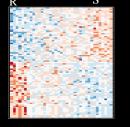
- Identify the appropriate therapeutic targets
 - Early molecular changes
- Treat early in the course of the disease
 - Develop reliable techniques for early detection
- Match the right patient with the right drug

Where Are We Now?

- Cancers are treated by site of origin (breast, colon, lung, prostate)
- Treatments are largely empiric and toxic
- Response rates are relatively low and which patients will respond cannot be predicted

The Future of Cancer Treatment

Patient	OMIC	Treatment	
Sample	Analysis	Options	
/			

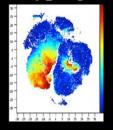

The Future of Cancer Treatment

Patient sample

Preclinical data Subtype Imaging

HER2 wHER2+ Transcriptional Signature

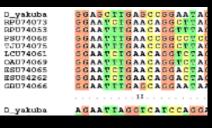
Mutation



Pathway

Imaging

Immunophenotyping



Functional Screens In Vitro

In Vivo

Computational biology

Data from all sources are integrated with clinical data to inform patient care

The 21st Century

Broad-based approach to cancer

- Specific therapies directed at critical targets
- Immune modulation
- Prevention and early diagnosis

